|
无心插柳 “灵光一现”破解“猜想”
大二的时候,刘路开始自学起数理逻辑的知识,阅读了《计算理论》《数理逻辑理论》等三本专业书籍。
数理逻辑既是数学的一个分支,也是逻辑学的一个分支,是用数学方法研究逻辑或形式逻辑的学科,其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统,是数学基础的一个不可缺少的组成部分。
刘路在这个领域进步很快,很有心得。他很多次兴奋地推导出一些概念和思路,后来在阅读书籍时却发现已经有所介绍,常常经历“最初认为自己想法很靠谱”的“大喜”,到“发现它原来不是新想法”的“大悲”。
大三的暑假,刘路开始自学数理逻辑的一个分支反推数学(通常数学大致是从公理到定理的研究,而反推数学则是从定理到公理的研究)。在这个过程中,刘路接触到拉姆齐二染色定理。
拉姆齐二染色定理源自1930年,英国数学家弗兰克·普伦普顿·拉姆齐《形式逻辑上的一个问题》的论文中的证明R(3,3)=6。可以通俗地解释为:在一群不少于3人的人中,若任何两人都刚好只有一个共同认识的人,这群人中总有一人是所有人都认识的。
匈牙利杰出的数学家保罗·艾狄胥描述了证明这条定理的难度:“想象有支外星人军队在地球降落,要求取得R(5,5)的值,否则便会毁灭地球。在这个情况下,我们应该集中所有电脑和数学家尝试去找这个数值。若它们要求的是R(6,6)的值,我们就要尝试毁灭这队外星人了。”
海内外不少学者都在进行拉姆齐二染色定理的证明论强度的研究,1995年,英国数理逻辑学家西塔潘提出了关于拉姆齐二染色定理证明强度的猜想,即“西塔潘猜想”,用专业术语描述,他猜测“RT_22能推出WKL”。
对于“西塔潘猜想”,刘路大二便已经看到过,却从未想过自己有天会去论证它。就在2010年10月的一天,刘路在看书的时候,“灵光一现”,认为如果利用之前学到的一个方法稍作修改便可证明西塔潘猜想。一向淡定的他兴奋得“心脏快要跳出来了”。他立即跑回宿舍,连夜用英文写出证明过程的论文《“RT_22 does not imply WKL”》(即“RT_22推不出定理WKL”),以笔名“刘嘉忆”投给了美国芝加哥大学主办的《符号逻辑期刊》。刘路的研究结果对沉寂了17年的“西塔潘猜想”给出了否定的答案!
《符号逻辑期刊》是数理逻辑领域的国际权威杂志,该刊主编、逻辑学专家、芝加哥大学数学系邓尼斯·汉斯杰弗德教授一直是西塔潘猜想的研究者,他看到刘路的证明后很感兴趣,但因之前从未听说过中国数学界有这号人物,所以也有些疑虑。
2011年5月,北京大学、南京大学(招生办)和浙江师范大学在杭州联合举办逻辑学术会议,刘路现场报告了他对拉姆齐二染色定理的证明论强度的研究。一个月后,刘路收到汉斯杰弗德发来的E-mail:“我是过去众多研究该问题而无果者之一,看到这一问题最终解决感到非常高兴,特别是你的证明如此漂亮,请接受我对你的研究成果的祝贺!”芝加哥大学博士达米尔·扎法洛夫认为:“这是一个重要的结果,促进了反推数学和计算性理论方面的研究。”
2011年9月,刘路获邀在美国芝加哥大学数理逻辑学术会议上作了40分钟报告,他是这次会议上亚洲高校的唯一参与者。
最年轻“研究员” 誓将兴趣进行到底
目前,已经成为中国最年轻的“教授级研究员”的刘路正忙着准备4月份将应邀出席的美国威斯康星大学学术会议的学术报告。
“我爱数学,渴望成为大数学家,我也希望自己能成为在多个领域有所建树的大学者。在我内心中,一直有一种渴望超越别人,渴望证明自己的动力。这个‘别人’有时是我身边的人,有时是历史上的伟人。正是这种‘野心’,让我不甘心放弃任何一个难题;也正是这种‘野心’,让我在面对成功和荣誉时能淡然处之。”刘路丝毫不掩饰对自己钟情的数学的热爱,和对取得该领域建树的“野心”。
最近,刘路获得了伯克利等三所国外知名大学数理逻辑相关专业的录取通知书。除了对数学基础理论的研究,刘路又开始“瞄”上了数学与计算机交叉学科“人工智能数据挖掘专业”,开始自修计算机基础知识,练习编程,收看网络公开课。“我将竭尽所能追求自己的梦想,追求我心爱的事业,我誓将兴趣进行到底。”刘路信心满满。(本报长沙3月26日电 )
(科技日报)
|