详解:航天空间交会对接技术(组图)
五、空间交会与对接技术概述(下)
1、四种类型
航天器空间交会对接技术的实施必须由高级控制系统来完成,根据航天员及地面站的参与程度可将控制方式划分为如下四种类型:①遥控操作:追踪航天器的控制不依靠航天员,全部由地面站通过遥测和遥控来实现,此时要求全球设站或者有中继卫星协助。②手动操作:在地面测控站的指导下,航天员在轨道上对追踪航天器的姿态和轨道进行观察和判断,然后动手操作。这是目前比较成熟的方法。③自动控制:不依靠航天员,由航天器上设备和地面站相结合实现交会与对接。该控制方法也要求全球设站或有中继卫星协助。④自主控制:不依靠航天员与地面站,完全由航天器上设备自主实现交会与对接。
从本质上说,上述分类可归结为人工控制方式或自动控制方式。迄今为止,美国较多地应用人工控制方式,而苏联/俄罗斯则主要采用自动控制方式。
用人控来完成太空交会与对接的优点是:可以提高交会与对接的成功率;能及时修正交会系统中的错误和排除故障;节省燃料和时间。自控交会与对接的优点是:不需要复杂的生命保障系统,可靠性高,无需考虑人员的安全和救生问题。交会与对接未来的发展趋势是人控和自控相结合,以提高交会与对接的灵活性、可靠性和成功率。
2、测量系统
先进的测量系统可以称作是航天器间进行交会与对接时的眼睛。
苏联/俄罗斯飞船与空间站对接使用的交会测量系统最早叫“针”,后来增加了数字计算机又改名为“航向”。“航向”测量系统具有可靠性高、作用距离远的特点,尤其是不需要庞大的“和平”号空间站作任何机动和姿态变化,航天员也可借助显示器和键盘进行手动控制。该系统在中远距离采用S频段微波雷达,近距离有激光测距仪、目视光学瞄准器。其S频段微波雷达装在飞船上,包括自动导引头、测距仪和径向速度测量装置;空间站上设有信标、应答机和通信设备等相应的搜索、捕获定向敏感器。“航向”系统共有9部天线组成搜索捕获和跟踪测量系统(追踪航天器上5部,目标航天器上4部),其中6部天线用于搜索捕获和初定向,1部用于停靠阶段定向,2部用于相互跟踪、相对运动测量和停靠阶段定向。用于搜索的天线为螺盘天线,用于跟踪的为抛物面天线。
美国“双子星座”飞船与“阿金纳”火箭对接,使用的交会测量系统为L频段非相干脉冲微波交会雷达、目视光学瞄准器。其中雷达作用距离为150米~450千米,目标航天器上安装应答机,由航天员通过光学瞄准器以手控方式进行交会与对接操作。美国“阿波罗”飞船指令舱与登月舱对接,使用的交会测量系统为X频段单脉冲连续波雷达、目视光学瞄准器。“阿波罗”与“联盟”飞船对接也采用这套测量系统。美国航天飞机与空间站对接,使用的交会测量系统是Ku频段脉冲多普勒雷达、目视光学瞄准器。它具有通信、收发功能,作用范围为30米~220千米,但接近与对接仍由手动完成。
近年来,激光雷达因具有可固化、重量轻、体积小,以及测量精度高、易于测量相对姿态的优点而倍受青睐。但目前它在国际交会与对接中尚处于试验阶段。而GPS导航定位技术相对成熟,已对空间交会与对接提供了有力的支持。
版权所有:中国教育和科研计算机网网络中心 Copyright © 1994-2017 CERNIC,CERNET,京ICP备05078770号,京网文[2014]2106-306号
关于假冒中国教育网的声明 | 有任何问题与建议请联络:Webmaster@cernet.com