粗糙集及PSO优化BP网络的故障诊断研究
针对BP神经网络故障诊断存在网络结构复杂、训练时间长、精度不高的问题,文章将粗糙集、微粒群算法、遗传算法引入到柴油机故障诊断中,提出了基于粗糙集理论与改进BP神经网络相结合的柴油机故障诊断算法。算法采用自组织映射方法对连续属性离散化、利用粗糙集理论对特征参数进行属性约简,使用微粒群算法优化BP网络结构,从而缩短训练时间,有效提高故障诊断的准确度。最后用柴油机的实际诊断结果验证了该算法的可行性、快速性和准确性。
版权所有:中国教育和科研计算机网网络中心 Copyright © 1994-2017 CERNIC,CERNET,京ICP备05078770号,京网文[2014]2106-306号
关于假冒中国教育网的声明 | 有任何问题与建议请联络:Webmaster@cernet.com