中国教育和科研计算机网 中国教育 高校科技 教育信息化 下一代互联网 CERNET 返回首页
丘成桐:明治维新至二战前后中日数学人才培养比较
2010-02-03 科学时报

  20世纪初叶的日本和中国数学

  1.日本数学

  20世纪初叶最重要的日本数学家有林鹤一(Tsuruichi Hayashi,1873~1935)和高木贞治(Teiji Takagi,1875~1960)。林鹤一创办了东北帝国大学的数学系,并用自己的收入创办了Tohoku数学杂志。

  但日本近代数学的奠基人应该是高木贞治。他在农村长大,父亲为会计师。他在1886年进中学,用的教科书有由Todhunter写的Algebra for Beginners和由Wilson写的Geometry。到了1891年,他进入京都的第三高中,三年后他到东京帝大读数学。

  根据高木的自述,他在大学的书本为Durègi写的《椭圆函数》和Salmon写的《代数曲线》,他不知道这些书籍与射影几何息息相关。当时菊池当教育部长,每周只能花几个小时授课,因此由藤沢主管,用德国式的方法来教育学生。他给学生传授Kronecker以代数学为中心的思想。高木从Serret写的Algebra Supérieure(法语)书中学习阿贝尔方程,并且学习H. Weber刚完成的两本关于代数学的名著。

  1898年,高木离开日本到德国柏林师从Frobenius,当时Fuchs和Schwarz还健在,学习的内容虽然和日本相差不大,但与名师相处,气氛确实不同。

  1900年,高木访问G?觟ttingen(哥廷根),见到了数学大师Klein和Hilbert。欧洲年轻的数学家大多聚集在此,讨论自己的创作。高木自叹日本数学不如此地远甚,相距有半个世纪之多。然而一年半以后,他大有进步,能感觉自如矣。可见学术气氛对培养学者的重要性。

  高木师从Hilbert,学习代数数论,印象深刻。他研究Lemniscate函数的complex multiplication。他在1903年完成博士论文,由东京大学授予博士学位(1900年时东京大学已经聘请他为副教授)。

  1901年,高木回到东京,将Hilbert在G?觟ttingen(哥廷根)领导研究的方法带回东京大学,他认为研讨会(Colloquia)这种观念对于科研至为重要,坚持数学系必须有自己的图书馆和喝茶讨论学问的地方。1904年他被升等为教授,教学和研究并重。他的著作亦包括不少教科书,对日本数学发展有很深入的影响。

  1914年第一次世界大战爆发,日本科学界与西方隔绝,他不以为苦,认为短期的学术封闭对他反而有很大的帮助,可以静下心来深入考虑class field理论。在这期间,他发现Hilbert理论有不足之处,在1920年Strasbourg世界数学大会中,他发表了新的理论。两年后他的论文得到Siegel的赏识,建议Artin(Emil Artin)去研读,Artin(Emil Artin)因此推导了最一般的互反律,完成了近代class field理论的伟大杰作。

  高木的学生弥永昌吉(Shokichi Iyanaga)于1931年在东京帝国大学毕业,到过法德两国,跟随过Artin,在1942年成为东京大学教授。他的学生众多,影响至巨。

  日本在上世纪30年代以后60年代以前著名的学者有如下几位:

  东京大学毕业的有:吉田耕作(Kosaku Yoshida,1931),中山传司(Tadashi Nakayama,1935),伊藤清(Kiyoshi Ito,1938),岩堀永吉(Nagayoshi Iwahori,1948),小平邦彦(Kunihiko Kodaira,1949),加藤敏夫(Tosio Kato,1951),佐藤斡夫(Mikio Sato,1952),志村五郎(Goro Shimura,1952),铃木道雄(Michio Suzuki,1952),谷山丰(Yutaka Taniyama,1953),玉河恒夫(Tsuneo Tamagawa,1954),佐竹一郎(Ichiro Satake,1950),伊原康隆(Yasutaka Ihara);京都大学毕业的有:冈洁(Kiyoshi Oka,1924),秋月康夫(Yasuo Akizuki,1926),中野重雄 (Shigeo Nakano),户田芦原(Hiroshi Toda),山口直哉(Naoya Yamaguchi),沟沺茂(Sigeru Mizohata),荒木不二洋(Fujihiro raki),广中平佑(Heisuke Hironaka 硕士,1953),永田雅宜(Masayoshi Nagata 博士,1950);名古屋大学毕业的有:角谷静夫(Shizuo Kakutani,1941),仓西正武(Masatake Kuranishi,1948),东谷五郎(Goro Azumaya,1949),森田纪一(Ki~iti Morita,1950);东北大学毕业的有:洼田忠彦(Tadahiko Kubota,1915),茂雄佐佐木(Shigeo Sasaki,1935);大阪大学毕业的有:村上真悟(Shingo Murakami),横田洋松(Yozo Matsushima,1942)。

  东京大学和京都大学的学者继承了高木开始的传统,与西方学者一同创造了20世纪中叶数学宏大的基础,这些学者大都可以说是数学史上的巨人。

  其中小平邦彦和广中平佑都是Fields medal(菲尔茨奖)的获得者,他们都在美国有相当长的一段时间,广中平佑在哈佛大学得到博士,20世纪90年代后回日本。小平邦彦则在1967年回国,他在美国有4位博士生,而在日本则有13位之多,著名的有K.Ueno,E.Horikawa,I.Nakamura,F.Sakai,Y.Miyaoka,T.Fujita,T.Katsura等,奠定了日本代数几何的发展。

  M.Sato的学生有T.Kawai、T.Miwa、M.Jimbo和M.Kashiwara,都是代数分析和可积系统的大师。Nagata的学生有S.Mori、S.Mukai、M.Maruyama。其中Mori更得到菲尔茨奖。

教育信息化资讯微信二维码

特别声明:本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。

邮箱:gxkj#cernet.com
微信公众号:高校科技进展